微分方程的一个分支。研究当初始条件甚至微分方程右端函数发生变化时,解随时间增长的变化情况。主要方法有特征数法,微分与积分不等式,李雅普诺夫函数法等。是天体力学,自动控制等各种动力系统中的首要问题。
对稳定性的研究是自动控制理论中的一个基本问题。稳定性是一切自动控制系统必须满足的一个性能指标,它是系统在受到扰动作用后的运动可返回到原平衡状态的一种性能。关于运动稳定性理论的奠基性工作,是1892年俄国数学家和力学家 А.М.李雅普诺夫在论文《运动稳定性的一般问题》中完成的。
想要了解更多“稳定性理论”的信息,请点击:稳定性理论百科