紫外可见漫反射光谱(UV-VisDRS)主要是利用光在物质表面的反射来获取物质的信息,与物质的电子结构有关。一般用于研究固体材料,可研究催化剂表面过渡金属离子及其配合物的结构、氧化状态、配位状态、配位对称性;可在光催化中研究催化剂的光吸收性能;可用于色差的测定等。
固体中金属离子的电荷跃迁
光谱产生的根本原因是固体中金属离子的电荷跃迁。在过渡金属离子-配位体体系中,一方是电子给予体,另一方为电子接受体。在光激发下,发生电荷转移,电子吸收能量,光子从给予体转移到接受体,在紫外区产生吸收光谱。当过渡金属离子本身吸收光子激发发生内部d轨道内的跃迁(d-d)跃迁,引起配位场吸收带,需要能量较低,表现为在可见光区和近红外区的吸收光谱。基于此,可以确定过渡金属离子的电子结构(价态、配位对称性等)。
当光照射到固体表面时,发生反射和散射。如图2(左)所示,当发生镜面反射时,反射角等于入射角,光不被吸收。当光束入射到粉末状的晶面层时,一部分光在表层各晶粒面产生镜面反射;另一部分光则折射入表层晶粒的内部,经部分吸收后射至内部晶粒界面,再发生反射、折射吸收。如此多次重复,最后由粉末表层朝各个方向反射出来,这种辐射称为漫反射光。对固体粉末样品的镜面反射光及漫反射光同时进行检测可得到其漫反射光谱。
紫外可见分光光度计与紫外可见漫反射的区别: 前者采用透射方式,样品为溶液,后者采用漫反射方式,样品多为固体。透射法虽然具有重现性好、准确度高、操作方便等优点,但对于一些难溶物质、不透明物质、无法做成单晶的物质,透射法并不适用。而漫反射法可以不改变固体物质的状态直接测定其光谱。
(1)在所要测定的波长范围内应具有良好的反射率(100%),不能有特征吸收;(2)不能发出荧光;
(3)要有一定的化学稳定性和机械性能,长期使用后不变质,不易碎;
(4)容易制备。此外,标准白板的制备技术也会影响到标准白板的反射率,如颗粒的大小,压片时压力的大小等。
(1)仪器工作原理
紫外可见漫反射光谱的测试方法是积分球法。如图4所示,光源发出的光经过处理进入样品,通过一个内壁涂有MgO(或BaSO4、MgCO等)的积分球,把样品表面的反射光收集起来再投射到接受器(光电倍增管或光电池),产生电信号,并以波长的函数在记录仪上记录下来,就成了一条光谱曲线。一般可在紫外可见分光光度计上装配 积分球附件 对紫外可见漫反射光谱进行测定。
(2)积分球
积分球又称为光通球 ,是一个中空的完整球壳,其结构如上图所示,其典型功能就是收集光。积分球内壁涂白色漫反射层(一般为BaSO4或者Mg0),且球内壁各点漫反射均匀。光源在球壁上任意一点上产生的光照度是由多次反射光产生的光照度叠加而成的。
积分球的目的就是为了收集所有的漫反射光,而通过积分球来测漫反射光谱的原理在于, 由于样品对紫外可见光的吸收比参比要强,因此通过积分球收集到的漫反射光的信号要弱一些,这种信号差异可以转化为紫外可见漫反射光谱。
(3)制样
(1)如果样品是具有一定 平面的固体 ,只需将样品放在积分球的样品窗孔一边,在参比窗孔一边放标准白板即可测量漫反射光谱。 样品大小至少为2×3cm。
(2)如果样品是 粉末 ,需 研磨后送样 。有两种制样方法,一种是将粉末放入漫反射样品池中(具有一个直径为30mm左右,深3-5mm凹穴的塑料或有机玻璃板),用光滑的平头玻璃棒压紧,将漫反射样品池放在样品窗孔一边及可测量。另一种方法是将粉末样品放入直径为25-30mm的压模中压成片子。如果样品吸收太强,可用在此波段范围内无吸收的惰性稀释剂,如BaSO4、MgO等进行稀释。如果粉末的颗粒较大,不易压紧,也可加些BaSO4、MgO等。如果样品量少,也可用BaSO4、MgO等将样品池填满压平,再将样品撒在表面轻轻抹平即可测量,如下图所示。
(4)影响漫反射光谱的因素
①粒度的大小:表现为吸光度随粒度的减小而降低。
②样品表面的光洁度:随着表面光滑度增加,镜面反射增加,表观吸光度降低。
③样品受潮或水分存在:水分的存在导致散射能力的降低,表观吸光度增加,另外水分子与样品发生化学反应或形成氢键会使光谱发生变化。
④吸附剂或稀释剂粒度的大小:随着吸附剂或稀释剂粒度的增大,谱带倾向于增宽。因此,在准备样品和制样过程中需要充分考虑尽量排除干扰因素。
免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。